Since the arrival of the internet, network effects have become the most important source of value creation in the networked economy. Companies built on top of network effects have become the dominant players in the digital world, having created 70% of the value in tech over the past two decades.
Our understanding of network effects underlies much of what we do at NFX. As entrepreneurs, we started 10 network effect businesses worth over $10 billion, and we’ve previously published two of the most comprehensive online references on network effects:
Today, we’re releasing the third part of this series: the NFX Archives. Think of it like required, foundational reading for mastering how network effects work. These are the papers, articles, and books we read that proved to be invaluable for building strong, highly defensible companies.
This repository is always evolving and growing, and so we’ll continue to update and expand it. For now, there are three parts:
For your convenience, we’ve summarized the articles and their main points. If you want a deeper dive on any particular resource, we encourage you to click through and read the full article. We’ve found every article in this list to be worth the time investment.
We believe world-class Founders see what others do not. Our mission is to empower them in building companies that endure. We hope you find these resources just as invaluable to your journey as they were to ours.
Network science, also known as graph theory in mathematics, is the academic study of complex networked systems and their real-world properties. This section includes a thorough survey of network fundamentals: what we currently know about the structure, behavior, dynamics, categories, and characteristics of different types of networks. For those interested, this collection of academic resources will give you the ability to look past the surface and understand the underlying patterns of our networked world at a deeper level.
Stanley Milgram, Psychology Today, 1967
Summary
The earliest study to ever verify the existence of the “small-world phenomenon”, i.e. the very low number of intermediaries needed to connect two people in massive networks of millions of people (in this case, the United States back in the 1960s with a population of ~ 200 million). Milgram’s method was basically to select two people on opposite sides of the country at random and find out how many intermediaries it would take to forward a folder from person A (the “starting person”) to person B (the “target person”). With this simple experiment in a pre-internet world, Milgram was able to establish a median path length of 6 (5 intermediaries) across the population of the United States, corresponding to the popular phrase “six degrees of separation” (later popularized by playwright John Guare).
Why It Matters
Milgram’s article was the first empirical study of personal direct networks, and set the stage for broader studies of real-world networks that came afterwards. It foreshadowed many topics expanded on by resources later in this guide, such as the importance of acquaintances (the strength of weak ties) in reducing path length, the existence of small-world networks, and the differential importance of nodes and paths. One of the first social networks on the internet, sixdegrees.com, was named after the small-world phenomenon explored by Milgram. So, too, was the actor Kevin Bacon’s charity sixdegrees.org, a reference to the 1994 meme “six degrees of Kevin Bacon” which referred to the small-world phenomenon in the Hollywood actor network.
Selected Quotations
Mark. S Granovetter, American Journal of Sociology 1973
Summary
In one of the most heavily cited sociology articles ever published (with more than 50,000 citations as of December 2018), “the Strength of Weak Ties” was one of the foundational documents of network science. In it, Mark Granovetter argues that so-called “weak ties” are responsible for connecting nodes in different network cliques or “clusters”, because strong ties are usually shared by other members of the same cluster. In other words, weak ties — e.g. acquaintances — are the “bridges” between nodes in a network that don’t usually interact; and in performing that function, they reduce the overall average degree of separation, or path length, between any two nodes in a network.
Why It Matters
The counterintuitive “strength of weak ties” argument has many important implications for Founders looking to build networked products. For one thing, it shows that enabling users to form weak ties easily is probably crucial for the cohesion of a network. Weak ties could be an effective countermeasure against the development of algorithmic filter bubbles, which can have harmful externalities and damage the health of the user ecosystem. But the ability to form weak ties must be tempered against the need to avoid network pollution which can result from too many weak ties.
Selected Quotations
James S. Coleman, University of Chicago Press, 1988
Summary
This paper attempts to formalize the concept of “social capital” — a parallel concept to financial capital, physical capital, and human capital. From a network perspective, the thesis can be interpreted as a description of the protocols and payload of exchange between nodes in a network that isn’t mediated by currency (i.e. a network that’s not a market). Social capital, Coleman observes, performs the same function as in such networks as financial capital (currency + transaction systems) for markets. The author proposes that social capital arises from a combination of network structure and the strength of ties within a network, and classifies several different categories of social capital.
Why It Matters
This paper demonstrates the importance of network structure to the formation of norms and trustworthiness within a network and reveals how the ability to substitute reputation and obligation for financial credit and insurance can work within tight, closed networks (such as wholesale diamond markets, as discussed in this paper). The author uses the terms “closed” and “closure” to indicate the existence of network clusters with a high proportion of overlapping strong ties (i.e. a high clustering coefficient). The implications for building networked products are profound for Founders who want to create an effective self-regulating community (e.g. certain subreddits) — instead of having to hire full-time content monitors or algorithmic censors for user-generated content (e.g. Facebook, Twitter, and YouTube).
Selected Quotations
Duncan J. Watts & Steven H. Strogatz, Nature 1998
Summary
This heavily cited paper extends the “strength of weak ties” thesis by asking whether the “small-world” phenomenon (networks where there are relatively few degrees of separation between any two given individuals) can exist in networks with a high degree of clustering (cliques or highly interconnected local neighborhoods within a network). The authors show that, with just a few “short-cuts” (i.e. bridges) connecting faraway neighborhoods within a network, even a highly clustered network can have a low characteristic path length. Their name for such a network is a “small-world network”, also known as the Watts-Strogatz model.
Why It Matters
The “small-world network” thesis shows that highly regular networks with many strong ties and few weak ties can still be relatively well-connected, meaning that even if the users of a social network (for example) mostly only interact with a small circle of other users, the larger network can still be relatively cohesive as long as just a few “short-cut” connections exist. The Watts-Strogatz model thus provides a solution to maintaining network cohesion without risking network pollution — allowing users to make short-cut connections to distant users while preventing the need for an inflated amount of irrelevant connections (e.g. LinkedIn).
Selected Quotations
Albert-László Barabási and Réka Albert, Science, 1999
Summary
In contrast to both Watts and Strogatz’s small-world network model and to Erdős–Rényi random graph model, Albert-László Barabási and Réka Albert show that in large, complex networks, highly connected vertices have a large chance of occurring and of dominating connectivity in a network. In other words, a small number of “rich” nodes accrue most of the links, which explains the scale-free, power-law distribution of node degrees observed within complex networks.
Why It Matters
The main importance of this article is that it’s one of the first to evaluate network topology by using data from real-world networks, and it concludes that the reason for the existence of scale-free networks in the real world (instead of random graphs) is a phenomenon Barabási calls preferential attachment. Preferential attachment happens when, as networks grow, new nodes disproportionally tend to form links with nodes that already have a high degree of connectivity, giving complex networks a self-organizing quality. In other words, in real-world networks, well-connected nodes tend to get even more connected as the network scales.
Selected Quotations
M. E. J. Newman, University of Michigan Department of Physics 2003
Summary
A well-written, thorough overview of academic literature on network science, covering everything from clustering coefficient formulas to models of network resilience. Although much of the article is technical, containing mathematical models and formulae of different network phenomena, it’s still well worth a skim for Founders looking for an all-inclusive resource to familiarize themselves with the foundations of network science and how network properties can be statistically studied.
Why It Matters
There are many gems with real-world implications in this article. In a section about network resilience, for example, Newman points out that most real-world networks can endure the removal of nodes at random without much damage, but are very vulnerable to the removal of high-degree nodes. So in other words, key users with high network centrality are the key to the overall health of the network— making them much more valuable than marginal nodes without many connections. If a key user or group of key users have high enough network centrality, they could even become indispensable for the health of the network. This implies that Founders should do whatever they can to incentivize users with high degree centrality to stay, and should treat it as a very serious problem when they notice movement of such users away from their network.
Selected Quotations
Facebook Research, June 2012
Summary
Utilizing Facebook user data, a research team was able to observe an average distance (path length) of 4.74 across their network, meaning that there were on average 3.74 degrees of separation between any two people on the Facebook network —- the largest ever studied up until the time of this paper.
Why It Matters
Founders can take several lessons away from this paper. Firstly, it’s significant that a technology company was able to single-handedly reduce the characteristic path length of a significant portion of humanity. The implications of that for the diffusion of ideas are pretty vast, and the cohesion of the Facebook network probably goes towards explaining the high efficacy of Facebook advertising. Secondly, it’s worth noticing that Facebook devoted the time and resources to conduct this study. Facebook knows their network is a goldmine, they’re familiar with the basic concepts of graph theory, and they’re applying network science to make the best use of their network. If Zuck cares about this stuff, you probably should too.
Selected Quotations
Facebook Research, February 2016
Summary
An update of Facebook’s initial study in 2012, this follow-up shows that the trend towards fewer degrees of separation between users in the Facebook network continued even as the size of the network more than doubled, from 721 million active users to 1.59 billion.
Why It Matters
Another data point demonstrating the increasingly networked nature of the world at large as a result of internet-enabled networks like Facebook. It is striking that Facebook sees a reduction in characteristic path length across their network as an unambiguous sign of progress, as such a trend falls in line with their mission statement to make the world more “open and connected”. However, some of the downsides of an increased ease of diffusing ideas across Facebook made themselves known the very year this study was published.
Selected Quotations
Albert-László Barabási, 2016
Summary
Barabási’s “Network Science” is one of the most comprehensive resources available on network science. It covers most network fundamentals, from network distance to degree distribution, and walks you through the underlying math. Barabási also includes an expanded discussion of his theory of “preferential attachment”, which helps show why a wide variety of network structures display the scale-free property.
Why It Matters
Network Science is worth skimming in its entirety for Founders who want a solid fundamental grasp of both graph theory and network science, but special attention is due to Chapter 5, “The Albert-Barabási Model”, which introduces the concept of preferential attachment. Here, Barabási observes that network degrees (links per node) tend to follow a Pareto “80/20” distribution rather than a Poisson distribution as might be expected, if extrapolating from random graph theory. He explains this by pointing out that nodes prefer to link to connected nodes (nodes with a high relative degree) — leading to a small number of nodes with a large number of links. Another observation Founders might find useful is that social networks tend to be assortative, meaning that hubs (high degree nodes) tend to link to each other and, at the same time, avoid linking to low degree nodes.
Selected Quotations
Niall Ferguson, 2018
Summary
The Square and the Tower is about the evolution of social and political networks and hierarchies throughout history. Although most of the book is about history, in chapters 5 through 8 Niall Ferguson, who’s an excellent writer, explains most of the major network science concepts in an accessible way — from the origins of graph theory right up to the present. Ferguson also recaps a lot of the relevant academic literature in easy-to-understand, plain language, including some resources covered elsewhere in this article. Topics of interest include: scale-free networks, modular networks, hierarchies, network vulnerabilities, and inter-network dynamics.
Why It Matters
Founders looking for a well-written, accessible take on network science will find chapters 5-8 of the Square and the Tower valuable. Throughout the book, Ferguson deftly applies abstract network science concepts in analyzing real events, which may prove inspirational for Founders looking to apply theoretical network concepts in a real-world context. For example, his insights on network structure have important implications for building virality. As we’ve written in the past, it’s not always the product itself that leads to rapid dissemination. Targeting the right network cluster can be more important — which is why we urge our Founders to find the white-hot center.
Selected Quotations
In the past, NFX has published some of our frameworks for understanding network effects, including the NFX Bible and the NFX Manual. In addition, we’ve done case studies examining specific companies to provide commonly understood examples of how our frameworks map to the real world, including:
We’ve also made known different facets of network effects, such as
We do all this because we think it benefits Founders in their efforts to build transformative companies. There’s still much more ground for us to cover, as networks and network effects are a broad subject.
But, in the meantime, here are some of the best supplemental — and perhaps more academic — resources. There’s a surprising amount of value here for those Founders who are willing to take the time.
W. Brian Arthur, Harvard Business Review, July-August 1996
Summary
W. Brian Arthur, one of the first economists to work on complexity theory, was also early to recognize the importance of network effects in his seminal work on increasing returns, which he began in the 1970s.
In this classic HBR summary of his work on increasing returns, Arthur distinguishes two types of markets. One, which he calls the “Halls of Production”, are markets subject to diminishing returns. These markets, he says, act in a way consistent with traditional economics: diminishing returns impose natural limits on market share, meaning that margins stay low and prices stay competitive. He associates the “Halls of Production” with manufacturing and traditional industry.
Increasing returns markets, on the other hand, tend to produce winner-take-most effects, where a single winner takes most of the value in a market. This increasing returns dynamic, according to Arthur, characterizes one part of the economy in particular: high technology. He calls this part of the economy the “Casino of Technology”.
Why It Matters
Like NFX, Arthur argues that Founders looking to play at the “Casino of Technology” need to learn how to actively manage increasing returns if they want to win. It’s not enough to have superior technology or to be the first mover in a market — you have to understand what Arthur calls the local market “ecology” (i.e. the network of adjacent or enabling technologies).
He also argues that in high-volatility, increasing returns markets, you have to become a “wizard of precognition” to see “the shape of the next game.” Constant adaptation and correctly identifying the shape of things to come are the skills for winning in increasing returns markets, rather than the “Halls of Production” skills of incremental optimization, driving down costs and increasing quality.
(Side note: W. Brian Arthur did an a16z podcast with Marc Andreessen and Sonal Chokshi in 2018 where he discusses the same ideas in an updated context. It’s worth a listen for Founders who prefer an audio format).
Selected Quotations
Jeffrey Rohlfs, The Bell Journal of Economics and Management Science, 1974
Summary
Perhaps the first in-depth academic study of network effects, this paper examines what it calls “dynamic demand” for communication services. The authors noticed early on that the demand for a communication service scales with the size of the service, as each marginal subscriber improves the utility of the service for all other subscribers. This concept gave rise to the term “demand-side economies of scale”, which is one aspect of what we now call network effects.
Why It Matters
The most interesting nugget in this paper for Founders today has to do with pricing models — even as far back as 1974, the telecommunications industry figured out the value of “growth at all costs”, even if it meant offering pricing that didn’t make sense if you don’t take externalities (network effects) into account.
Selected Quotations
Rochet and Tirole, European Economic Association, 2003
Summary
This article develops several pricing structure formulae for 2-Sided Platforms (also applicable to 2-Sided Marketplaces), observing how various governance structures and network economics change the optimal pricing structures platforms should employ to attract both sides simultaneously.
Why It Matters
This article is mostly of interest to Founders who are working with 2-sided networks and want a way to set pricing strategy that’s based on an understanding of network economics. The authors have done a good job of accounting for the dynamics that make multi-sided networks more complicated to manage from a pricing standpoint.
Selected Quotations
S.J. Liebowitz, The New Palgrave’s Dictionary of Economics and the Law, 1998
Summary
A good overview of the early literature around network effects, including discussion of the mechanics of both positive and negative network effects and their market implications. Liebowitz also coins some helpful network vocabulary, such as when he posits a “congestion externality” (which we’ve written about as well, calling it Network Congestion).
Why It Matters
Liebowitz is excellent here at breaking down network effects to their basic elements and describing them precisely. For example, the distinction between what he calls “autarky value” (standalone value of a product without other users) and the “synchronization value” of a product (the value a product brings through interaction with other users of the product) is a helpful mental model for Founders to strategize networked product features.
He also emphasizes the difference between network externalities and network effects. True externalities are the unrealized secondary consequences of the platform and don’t benefit the platform. They are external. If the owners of a platform are able to move those externalities onto the platform (internalize them), then those externalities become true network effects, and they benefit the platform owners. This is somewhat of a semantic point, except that it shows the strategic importance of designing the product and business model so you capture the value you’re creating as a Founder.
Selected Quotations
Bob Briscoe, Andrew Odlyzko and Benjamin Tilly, IEEE Spectrum, 2006
Summary
An arguably failed attempt to disprove Metcalfe’s Law, given the authors’ own admittance that “our valuation of a communications network… cannot be proved” from first principles, and also given that the authors didn’t try to prove their point using real-world data (as Metcalfe would later do by way of rebuttal — see below). Still, it’s an interesting look at Metcalfe’s Law, and the authors suggest an alternative formula for valuing network effects, which grows at a slower logarithmic rate as the network scales.
Why It Matters
This resource is primarily useful for its critical examination of the underlying axioms of Metcalfe’s Law, chiefly by using thought experiments. In particular, it points out that the apparent flaw in both Metcalfe’s Law and Reed’s Law is the assumption that all connections or groups (clusters) within a network have equal value — a “common-sense argument that suggests Metcalfe’s and Reed’s laws are incorrect”. But, as Metcalfe shows in the rebuttals below, this article’s authors don’t realize how counterintuitive complex systems can be.
Selected Quotations
Bob Metcalfe, 2006
Summary
Around 1980, Bob Metcalfe, the inventor of the Ethernet, noticed that the value of the Ethernet network grew with each new ethernet node added at an exponential rate, a discovery which was immortalized as Metcalfe’s Law by George Gilder in 1993. Years later, Metcalfe revisits his own Law after criticism (above). First, Metcalfe proceeds to (hilariously) debunk Olydzko & co’s attempt to refute and revise his law, and then he goes on to suggest areas for further refinement. In doing so, he adds context and depth to his formulation of the value of network effects.
Why It Matters
There are quite a few key insights for Founders in Metcalfe’s essay, many of which were highly prescient given when it was written. Firstly, he anticipates the phenomenon of negative network effects long before social networks like Facebook began to experience it — and modeled mathematically how the “diseconomies of scale” of a network might begin to eventually overcome the increasing returns from positive network effects. He also inadvertently accounts for Reed’s Law (which would otherwise seem to contradict his law) by observing that Metcalfe’s Law recurses in local networks. That is to say, the value of the network like the internet, given by Metcalfe’s Law to be N^2, can be multiplied by the value of nested local networks (i.e. clusters), recursing all the way down the long tail of clusters within a network.
Selected Quotations
Bob Metcalfe, Computer, 2013
Summary
A follow-up to his 2006 refutation of what he now calls “Odlyzko’s Law”, e.g. the attempted revision of Metcalfe’s Law to define the value of a network as a logarithmic rather than exponential function of network size, this more formalized rebuttal uses a generalized sigmoid function based on Metcalfe’s Law (which Metcalfe calls a “netoid” function) to model an S-curve which he fits to Facebook data, plotting user growth data from 2004 to 2013 against Facebook’s annual revenue to show the first formal empirical proof of Metcalfe’s Law.
Why It Matters
Much of this article is aimed at formally proving the validity of Metcalfe’s Law, which is interesting of itself because it adds more weight to the importance of network effects for building transformative companies. But of particular interest are Metcalfe’s anecdotes about the growth of his ethernet company 3Com. Not only did he understand the value of network effects as the Marketing and Sales head of 3Com, but he actually used Metcalfe’s Law to sell his customers and motivate his salespeople. It’s a powerful example to Founders of how an understanding of network effects can help you sell your vision.
Selected Quotations
Tomasz Tunguz, 2015
Summary
In this blog post, venture capitalist Tomasz Tunguz describes four key advantages enjoyed by software-enabled marketplaces that allow them to collect a high volume of valuable data and get a data network effect going.
Why It Matters
Valuable insights for marketplace Founders on how best to leverage their data.
Selected Quotations
With James Currier (Managing Partner, NFX) & Anu Hariharan
Summary
Network effects experts James Currier (Managing Partner, NFX) and Anu Hariharan (formerly a16z, now Partner @ Y Combinator) recap the history, evolution, and taxonomy of network effects.
Why It Matters
There are many gems here about the big network effects success stories, and interesting insights into why network effects are so powerful a defensibility for technology in particular. It’s also a good recap of network effects content found in the NFX Manual and NFX Bible, although in podcast form.
Selected Quotations
Geoffrey Parker, Marshall W. Van Alstyne, and Thomas R. Eisenmann, Harvard Business Review, 2006
Summary
An analysis of two-sided networks focusing on how to navigate the complexity of multi-sidedness in the optimal way.
Why It Matters
Founders building 2-sided platforms, marketplaces, or any other business that have to handle supply and demand dynamics will find actionable tactics in this article.
Selected Quotations
Andrew Chen, published on Twitter
Summary
A great anthology resource on marketplaces from Andrew Chen, one of the most prolific writers on growth, formerly of Uber and currently a General Partner at Andreessen Horowitz.
Why It Matters
This is a great list of the best articles for Founders discussing real world, applied approaches to building marketplaces. It includes the NFX essay on Market Networks. Since Andrew published the list, NFX has subsequently published 19 Tactics to Solve the Chicken-or-Egg Problem and the NFX Marketplace Scorecard which we would also consider essential marketplace reading.
Marshall W. Van Alstyne, Geoffrey G. Parker, and Sangeet Paul Choudary, Harvard Business Review, 2016
Summary
This article introduces a more nuanced framework for understanding platforms, in which the authors propose 4 types of “players” in a platform ecosystem: owners (e.g. Google), providers (e.g. Samsung), producers (e.g. Android app developers), and consumers (e.g. Android phone consumers). It contrasts the “pipeline” business model that dominated traditional industries with the more dynamic platform model common in tech and shows how the rise of network effects has upended the old rules of strategy that used to apply in supply-side industrial economies.
Why It Matters
Van Alstyne et. al. make clear just how dominant network effects are as a defensibility in the digital age. As the authors point out, it took less than 8 years for Apple and Google to demolish the entrenched market positions of Nokia, Motorola, LG and other mobile manufacturers by leveraging a 2-sided platform network effect via iOS and Android. Brand and scale were not enough to defend against a powerful 2-sided network effect. Although the authors conflate platforms with all 2-sided networks, they get the essential point right by compellingly showing the hierarchy of defensibilities with examples and data.
Selected Quotations
We believe that for startup Founders, network effects are the most important defensibilities because they are native to the internet and because of the evidence we see: network effects have accounted for 70% of all value created in tech since 1994.
And in the digital world, there are three other defensibilities which also remain: brand, embedding, and scale. This section of the archive brings together sources written by investors from James Currier to Warren Buffet discussing the importance and nuances of defensibilities — a concept entrepreneurs must grasp to succeed in the digital world.
James Currier (Managing Partner, NFX), TechCrunch, 2015
Summary
If you haven’t read NFX’s original essay on defensibility, it’s a good place to start. In it, we explain why defensibilities create the most valuable companies, and why competitive advantages (while necessary) can only get you so far. We also point out that old defensibilities — access to raw materials, location, regulation, etc— apply less in a digital context, leaving just four defensibilities in the digital age: network effects, scale, brand, and embedding.
Why It Matters
Founders who read this will immediately feel the necessity of having a defensibility strategy as soon as possible — the sooner, the better. Even Founders with a passing familiarity with the concepts will find it a worthwhile read. The discussion of the different competitive advantages, from speed to capital, can also help early-stage Founders decide where to focus their efforts.
Selected Quotations
Warren Buffett, Morning Session – 1995 meeting (section 25)
Summary
In this 1995 video-recorded conversation with Charlie Munger, Warren Buffett speaks about company defensibility. He coins the term “economic moats” in referring to a business’s defensibilities, and explains how he sees defensibility as the fundamental “secret” to a company’s success.
Why It Matters
This is an interesting early formulation of defensibility theory by one of the world’s most influential and successful investors, which paved the way for how people would think about defensibility and its importance for years to come.
Selected Quotations
Michael E. Porter, Harvard Business Review, 1979
Summary
This influential essay, commonly known as the “Five Forces Model,” outlines the various competitive forces that shape different industries, and relates those forces to the potential profitability of companies operating in markets. Porter classifies competitive forces into 5 broad camps: the threat of new entrants, bargaining power of suppliers, bargaining power of customers, threat of substitute products/services, and internal competition (“jockeying for position among current competitors”).
Why It Matters
This article provides insight into the relationship between company defensibility and profitability within the larger ecosystem of an industry. It also accurately identifies two of the defensibilities that would persist into the internet age: scale and brand. However, because it was written before the advent of the internet economy, the five forces model doesn’t sufficiently take network effects into account. Later, work from other HBS professors would update this perspective — see the Pipes to Platforms model (Van Alstyne, Parker, and Choudary, 2016).
Selected Quotations
Bill Gurley, Above the Crowd, 2011
Summary
In this classic essay, Bill Gurley discusses the various factors that contribute to how companies are valued against their revenue, or their “price/revenue” multiple. He provides a scorecard of 10 business characteristics that impact a company’s likelihood of making it into what he calls the “10x+ price/revenue multiple club”. He includes 3 of the 4 defensibilities — network effects, embedding, and scale — in his scorecard, and also points out that, of these, network effects are the most powerful.
Why It Matters
Founders looking to understand how investors value companies and what draws their interest should give this essay a thorough read. It’s an excellent framework and comes from one of the best in the business. Beyond explaining nuances of different defensibilities (what Bill Gurley calls “competitive advantages”), it also contains pragmatic nuggets about what to watch out for in terms of customer behavior, market fragmentation, gross margin, and predictability of forward revenue if you’re looking to build a valuable company.
Selected Quotations
James Currier (Managing Partner, NFX), 2018
Summary
Expanding on our previous writing on defensibility and network effects, we explore the concept of reinforcement, i.e., the network effects of defensibilities. The observation at the heart of reinforcement is that the more defensibilities you add to your company, the more powerful all your other defensibilities become — just as the different parts of a castle work to reinforce one another, making the whole much more formidable than the sum of its parts.
Why It Matters
One of the key observations of this essay for Founders is that companies with core network effects are the easiest to reinforce. That is, they are typically the quickest to start benefiting from the compounding returns of multiple defensibities. We also discuss how companies like Amazon, Uber, and Facebook — all of which have multiple defensibilities — made an intentional effort to keep layering on more defensibilities throughout their lifespan.
Selected Quotations
Fred Wilson, AVC, 2014
Summary
A fictional but revealing anecdote by venture capitalist Fred Wilson that brings home how lethal it is for Founders not to have a defensibility strategy, and how almost any tech product can become a commodity over time if not properly defended.
Why It Matters
Fred Wilson says that he realized early on that he didn’t want to invest in commodity software, and so he asked himself “what will provide defensibility” for the software he chose to invest in? He concluded, correctly, that networked products are the least vulnerable to commoditization and therefore the most worthy of investment. Fred is also shrewd here in pointing out that network effects apply to enterprise products as well as consumer products.
Selected Quotations
Ben Thompson, Stratechery, 2018
Summary
Scale, as a function of spreading fixed costs and low marginal costs, is a basic concept from the industrial era — but it still applies to tech companies, which benefit from the very low marginal cost of software. Using Amazon as a case study, in this essay Stratechery’s Ben Thompson explores the mechanics of scale effects, providing a simplified, basic, and current description of how scale defensibility works.
Why It’s Relevant
This essay explains the unique scale advantages enjoyed by tech companies, and the exact reasons why scale can be such an effective defensibility. Thompson shows that, especially with tech, low marginal costs mean that margins actually scale along with revenue — so that an incumbent with scale effects enjoys much more profitability than new entrants.
Selected Quotations
Benedict Evans, 2017
Summary
This article discusses scale in the context of modern tech giants like Google, Facebook, Amazon and Apple. It explains how scale has enabled them to build secondary competitive advantages, such as the ability to conduct large experimental projects “without betting the company” — an important moat because it allows these companies “to disrupt themselves”.
Why It Matters
The relative decline of the once dominant Microsoft after the 1990s and the even more precipitous declines of AOL, Myspace, and Yahoo show that even companies with strong scale and network effects are still vulnerable to new waves of technology which allow them to be disrupted. Benedict Evans’ analysis is important in showing how companies can leverage existing competitive advantages to anticipate future threats — and how defensibilities, if married to the proper strategy, can endure the threat of disruption.
Selected Quotations
Matt Heiman, Greylock, 2018
Summary
In this article, CRV investor Matt Heiman discusses each of the three non-network effects defensibilities — scale, brand, and embedding (he bundles embedding under “switching costs”). The article walks through the nuances of defensibility for non-networked products.
Why It Matters
Heiman breaks down three reasons why scale makes companies more defensible: negotiating leverage, amortization of fixed assets, and product density. He also thinks that brand has become even more important in the digital age because the internet “elevates the importance of trust”. What’s more, his analysis of embedding is spot on — he points out that an embedding strategy is typical of enterprise software products like Salesforce. SaaS business models often rely on embedding themselves into customer operations and incur high switching costs, making it hard for competitors to gain market share.
Selected Quotations
As Founders ourselves, we respect your time. That’s why we built BriefLink, a new software tool that minimizes the upfront time of getting the VC meeting. Simply tell us about your company in 9 easy questions, and you’ll hear from us if it’s a fit.
Try ChatNFX